#### Trending Tags

#### Popular Searches

A Girl Was Crying Because Her Boyfriend Left Her She Broke A Bottle A Chair And An Expensive Vase What Broke First Riddles An Anklet G Ri Riddles Chikka Boranige Bagalalli Katti Riddles Cow Hide Riddles Ecosystem Riddles I Have Black White Teeth But I Am Not A Living Thing What Am Riddles In Marathi Riddles Its 7am You Are Asleep And There Is A Sudden Knock At Door Ri Riddlesat Door Ri Riddles Nobody Will Get This Right You Are Sleeping And Are Hungry Riddlesright You Are Sleeping And Are Hungry Riddles Ondu Huduga Ondu Hudugi Mattu Ondu Marad Riddles What Demands An Riddles What Did The Aardvark Say To The Taxi Driver Riddles What Vegetable Do You Get From Burning Wood Riddles When Is A Donkey Spelled With One Letter Riddles, Which Year Has 28 Dats Riddles

Feel free to use content on this page for your website or blog, we only ask that you reference content back to us. Use the following code to link this page:

#### Search Suggestions

Trouble finding ? Here are some search terms related to to try browsing:

Terms · Privacy · Contact
Riddles and Answers © 2019

## The Secret Santa Exchange

A group of ten friends decide to exchange gifts as secret Santas. Each person writes his or her name on a piece of paper and puts it in a hat. Then each person randomly draws a name from the hat to determine who has him as his or her secret Santa. The secret Santa then makes a gift for the person whose name he drew.

When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.

What is the probability that the 10 friends holding hands form a single continuous circle?

When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.

What is the probability that the 10 friends holding hands form a single continuous circle?

Hint: It's not as difficult as it seems.
It's the number of ways the friends can form a circle divided by the number of ways the names can be drawn out of the hat.

1/10

For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is

(n-1)! / n!

Since n! = (n-1)! * n (for n > 1), this can be rewritten as

(n-1)! / (n*(n-1)!)

Factoring out the (n-1)! from the numerator and denominator leaves

1/n

as the probability.

YES NO

For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is

(n-1)! / n!

Since n! = (n-1)! * n (for n > 1), this can be rewritten as

(n-1)! / (n*(n-1)!)

Factoring out the (n-1)! from the numerator and denominator leaves

1/n

as the probability.

*Did you answer this riddle correctly?*YES NO

## Post Your Secret Santa Riddles Below

Can you come up with a cool, funny or clever Secret Santa Riddles of your own? Post it below (without the answer) to see if you can stump our users.