Trending Tags
Popular Searches
Amount Ofkid Riddles Horror Movies Riddles If You Were Pushed Down A Flight Of Stairs What Would You Fall Against Riddles Im Akways Hungry I Must Always Be Fed Riddles Insect Riddles Potato Riddles Secret Admirer Riddles Skydiving Riddles Socce Riddles Thank You Riddles What Can You Hold Without Your Hands Riddles What Did The Aardvark Say To The Taxi Driver Riddles What Did The Bowling Ball Say To The Other Bowling Riddles What Is Smaller Than A Termites Mouth Riddles What Vegetabl Do You Get When You Cross A Breed Of Dog With A Baking Ingredient Riddles
Feel free to use content on this page for your website or blog, we only ask that you reference content back to us. Use the following code to link this page:
Terms · Privacy · Contact
Riddles and Answers © 2017
Single Riddles To Solve

Solving Single Riddles
Here we've provide a compiled a list of the best single puzzles and riddles to solve we could find.Our team works hard to help you piece fun ideas together to develop riddles based on different topics. Whether it's a class activity for school, event, scavenger hunt, puzzle assignment, your personal project or just fun in general our database serve as a tool to help you get started.
Here's a list of related tags to browse: Daily Riddles Rain Riddles Water Riddles
The results compiled are acquired by taking your search "single" and breaking it down to search through our database for relevant content.
Browse the list below:
A Man Was Outside Taking A Walk When It Began To Rain
A man was outside taking a walk when it began to rain. He did not have an umbrella and he wasn't wearing a hat. His clothes were soaked, yet not a single hair on his head got wet. How could this happen?
Hint:
9 Letters Riddle
What word in English has 9 letters that keeps producing another word when you remove any one letter from it (goes on up to a single letter)?
Hint:
Startling - starting - staring - string - sting - sing - sin - in - I. Did you answer this riddle correctly?
YES NO
YES NO
The Prime Number Riddle
Two hundred people in an auditorium are asked to think of a single digit number from 1 to 9 inclusive and write it down. All those who wrote down a prime number are now asked to leave. Ninety people remain behind in the hall. How many of these are expected to have written down an odd number?
Hint: Remember that 1 is not a prime number.
Those that remain behind must have written {1,4,6,8,9} and from this only {1,9} are odd. The probability of an odd number is thus 2/5.
Expected number of odds is 2/5 * 90 = 36 Did you answer this riddle correctly?
YES NO
Expected number of odds is 2/5 * 90 = 36 Did you answer this riddle correctly?
YES NO
The Secret Santa Exchange
A group of ten friends decide to exchange gifts as secret Santas. Each person writes his or her name on a piece of paper and puts it in a hat. Then each person randomly draws a name from the hat to determine who has him as his or her secret Santa. The secret Santa then makes a gift for the person whose name he drew.
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
Hint: It's not as difficult as it seems.
It's the number of ways the friends can form a circle divided by the number of ways the names can be drawn out of the hat.
1/10
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
Little Billy's Calculator
Little Billy has a calculator with 15 buttons. He has 10 keys for 0-9, a key for addition, multiplication, division, and subtraction. Finally, he has an = sign. However, Mark the Meanie messed up the programming on Billy's calculator. Now, whenever Billy presses any of the number keys, it comes up with a random single-digit number. The same goes for the four operations keys (+,-,x, /). So whenever Billy tries to press the + button, the calculator chooses randomly between addition, multiplication, subtraction, and division. The only key left untouched was the = sign.
Now, if Billy were to press one number key, one operation key, then another number key, then the = button, what are the chances the answer comes out to 6?
Now, if Billy were to press one number key, one operation key, then another number key, then the = button, what are the chances the answer comes out to 6?
Hint: Think about how many ways he could possibly get 6.
There is a 4% chance.
There are 16 possible ways to get 6.
0+6
1+5
2+4
3+3
6+0
5+1
4+2
9-3
8-2
7-1
6-0
1x6
2x3
6x1
3x2
6/1
There are 400 possible button combinations.
When Billy presses any number key, there are 10 possibilities; when he presses any operation key, there are 4 possibilities.
10(1st#)x4(Operation)x10(2nd#)=400
16 working combinations/400 possible combinations= .04 or 4% Did you answer this riddle correctly?
YES NO
There are 16 possible ways to get 6.
0+6
1+5
2+4
3+3
6+0
5+1
4+2
9-3
8-2
7-1
6-0
1x6
2x3
6x1
3x2
6/1
There are 400 possible button combinations.
When Billy presses any number key, there are 10 possibilities; when he presses any operation key, there are 4 possibilities.
10(1st#)x4(Operation)x10(2nd#)=400
16 working combinations/400 possible combinations= .04 or 4% Did you answer this riddle correctly?
YES NO
Made Of Metal
These things are made of metal
You might have lots or just a single
If you give them a good shake
The noise that they make is a jingle
Its a?
You might have lots or just a single
If you give them a good shake
The noise that they make is a jingle
Its a?
Hint:
Miss Millie's Parrot
When Miss Millie purchased her new parrot, the salesman assured her that it would repeat any word it heard. About a week later, Miss Millie returned the parrot complaining it hadn't uttered a single word. Given that the salesman had spoken the truth about the parrot's abilities, why wouldn't the bird talk?
Hint:
Black As Night Riddle
With three eyes and a black as night, I frequently knock down ten men with a single strike! What am I?
Hint:
99 Points Riddle
While out bowling with his friends, a man managed to throw eight strikes (all ten pins knocked down in a single throw) and not a single gutter ball during the entire game. To his amazement, his final score was only 99 points! Assuming there were no penalties or fouls, can you come up with a ten frame scorecard with eight strikes and a final score of only 99 points?
Hint: If you knock down a single pin, for example at the far left of the back row, then repeat the same identical shot on your second throw, you'll score 0 points for your second throw (because there's no pin there anymore), but it's not a gutter ball as the s
Just to reiterate the hint, if you knock down a single pin, for example at the far left of the back row, then repeat the same identical shot on your second throw, you'll score 0 points for your second throw (because there's no pin there anymore), but it's not a gutter ball as the shot did not enter the gutter. Did you answer this riddle correctly?
YES NO
YES NO
Walking In The Rain
Samuel was out for a walk when it started to rain. He did not have an umbrella and he wasn't wearing a hat. His clothes were soaked, yet not a single hair on his head got wet. How could this happen?
Hint:
Add Your Riddle Here
Have some tricky riddles of your own? Leave them below for our users to try and solve.