#### Trending Tags

#### Popular Searches

A Boy Has As Many Sisters As Brothers But Each Sister Has Only Half As Many Sisters As Brothers How M Riddles A Man In A Car He Sees A Gold Door A Riddles Brown And Old By Day White And Young By Night I Have None Faces B Riddles Communication Riddles Construction Workers Riddles How Can A Girl Go 25 Days Without Sleeping Riddles If It Takes A Man One Hour To Dig A Whole 2 Meters Long 2 Meters Wide And 2 Meters Deep How Longwould It Take The Same Man To Dig A Whole 4 Meters Long 4 Meters Wide Riddles Jack The Ripper Ridd Ridd Riddles Kotiya Kaige Koduva Hoovu Riddles Nutrition Riddles Pencil Sharpener R Riddles To Whom Does Every Riddles Valentine Day Riddles Where Do Dogs Go When They Lose Their Ta Riddles, Whites A Trombones Favorite Playground Equitment Riddle

Feel free to use content on this page for your website or blog, we only ask that you reference content back to us. Use the following code to link this page:

Terms · Privacy · Contact
Riddles and Answers © 2020

## Three People In A Room

Three people enter a room and have a green or blue hat placed on their head. They cannot see their own hat, but can see the other hats.

The color of each hat is purely random. They could all be green, or blue, or any combination of green and blue.

They need to guess their own hat color by writing it on a piece of paper, or they can write 'pass'.

They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.

If at least one of them guesses correctly they win $50,000 each, but if anyone guess incorrectly they all get nothing.

What is the best strategy?

The color of each hat is purely random. They could all be green, or blue, or any combination of green and blue.

They need to guess their own hat color by writing it on a piece of paper, or they can write 'pass'.

They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.

If at least one of them guesses correctly they win $50,000 each, but if anyone guess incorrectly they all get nothing.

What is the best strategy?

Hint:

Simple strategy: Elect one person to be the guesser, the other two pass. The guesser chooses randomly 'green' or 'blue'. This gives them a 50% chance of winning.

Better strategy: If you see two blue or two green hats, then write down the opposite color, otherwise write down 'pass'.

It works like this ('-' means 'pass'):

Hats: GGG, Guess: BBB, Result: Lose

Hats: GGB, Guess: --B, Result: Win

Hats: GBG, Guess: -B-, Result: Win

Hats: GBB, Guess: G--, Result: Win

Hats: BGG, Guess: B--, Result: Win

Hats: BGB, Guess: -G-, Result: Win

Hats: BBG, Guess: --G, Result: Win

Hats: BBB, Guess: GGG, Result: Lose

Result: 75% chance of winning!

YES NO

Better strategy: If you see two blue or two green hats, then write down the opposite color, otherwise write down 'pass'.

It works like this ('-' means 'pass'):

Hats: GGG, Guess: BBB, Result: Lose

Hats: GGB, Guess: --B, Result: Win

Hats: GBG, Guess: -B-, Result: Win

Hats: GBB, Guess: G--, Result: Win

Hats: BGG, Guess: B--, Result: Win

Hats: BGB, Guess: -G-, Result: Win

Hats: BBG, Guess: --G, Result: Win

Hats: BBB, Guess: GGG, Result: Lose

Result: 75% chance of winning!

*Did you answer this riddle correctly?*YES NO

## Add Your Riddle Here

Have some tricky riddles of your own? Leave them below for our users to try and solve.