Trending Tags
Popular Searches
Belle Princess Riddles Envelope And Money Riddles Environment Pollution Riddles I Always Get Transferred From One Place To Another Riddles Lazy Riddles Memorial Day Riddles On Temple Riddles People Climb Me Cut Me And Burn Me They Show Me No Respect My Rings Are Not Of Hold But They Do Tell My Age Riddles Poor Have It Riddles Psychopath Riddles Raincoat Riddles Red Rose Riddles Riddle Ro Take You To A Nbq Riddles Tear One Off Scratch My Head What Was Red Is Now Black Instead Riddles There Were 30 Riddles
Feel free to use content on this page for your website or blog, we only ask that you reference content back to us. Use the following code to link this page:
Terms · Privacy · Contact
Riddles and Answers © 2017
Det Riddles To Solve

Solving Det Riddles
Here we've provide a compiled a list of the best det puzzles and riddles to solve we could find.Our team works hard to help you piece fun ideas together to develop riddles based on different topics. Whether it's a class activity for school, event, scavenger hunt, puzzle assignment, your personal project or just fun in general our database serve as a tool to help you get started.
Here's a list of related tags to browse:
The results compiled are acquired by taking your search "det" and breaking it down to search through our database for relevant content.
Browse the list below:
Yahtzee Riddle
The game of Yahtzee is played with five dice. On the first turn, a player rolls all five dice, and then may decide to keep any, all, or none of the dice aside before rolling again. Each player has a maximum of three rolls to try to get a favorable combination of dice "kept" on the side.
If a player rolls two 2s and two 4s on his/her first roll, and keeps all four of these dice aside, what is the probability of getting a full house (three of one value and two of another) in one of his/her next two rolls? (ie what is the probability of getting either a 2 or a 4 in one of the next two rolls?)
If a player rolls two 2s and two 4s on his/her first roll, and keeps all four of these dice aside, what is the probability of getting a full house (three of one value and two of another) in one of his/her next two rolls? (ie what is the probability of getting either a 2 or a 4 in one of the next two rolls?)
Hint: Think of the probability of NOT getting a full house.
5/9
The answer is NOT 2/3 because you cannot add probabilities. On each roll, the probability of getting a 2 or a 4 is 1/3, so therefore, the probability of not getting a 2 or a 4 is 2/3. Since the die is being rolled twice, square 2/3 to get a 4/9 probability of NOT getting a full house in two rolls. The probability of getting a full house is therefore 1 - 4/9, or 5/9. Did you answer this riddle correctly?
YES NO
The answer is NOT 2/3 because you cannot add probabilities. On each roll, the probability of getting a 2 or a 4 is 1/3, so therefore, the probability of not getting a 2 or a 4 is 2/3. Since the die is being rolled twice, square 2/3 to get a 4/9 probability of NOT getting a full house in two rolls. The probability of getting a full house is therefore 1 - 4/9, or 5/9. Did you answer this riddle correctly?
YES NO
The Secret Santa Exchange
A group of ten friends decide to exchange gifts as secret Santas. Each person writes his or her name on a piece of paper and puts it in a hat. Then each person randomly draws a name from the hat to determine who has him as his or her secret Santa. The secret Santa then makes a gift for the person whose name he drew.
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
Hint: It's not as difficult as it seems.
It's the number of ways the friends can form a circle divided by the number of ways the names can be drawn out of the hat.
1/10
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
Knights Of The Round Table Riddle
King Arthur, Merlin, Sir Lancelot, Sir Gawain, and Guinevere decide to go to their favorite restaurant to share some mead and grilled meats. They sit down at a round table for five, and as soon as they do, Lancelot notes, "We sat down around the table in age order! What are the odds of that?"
Merlin smiles broadly. "This is easily solved without any magic." He then shared the answer. What did he say the odds were?
Merlin smiles broadly. "This is easily solved without any magic." He then shared the answer. What did he say the odds were?
Hint: Does it matter if they are sitting clockwise or counterclockwise? Or where the oldest sits?
The odds are 11:1. (The probability is 1/12.)
Imagine they sat down in age order, with each person randomly picking a seat. The first person is guaranteed to pick a seat that "works". The second oldest can sit to his right or left, since these five can sit either clockwise or counterclockwise. The probability of picking a seat that works is thus 2/4, or 1/2. The third oldest now has three chairs to choose from, one of which continues the progression in the order determined by the second person, for a probability of 1/3. This leaves two seats for the fourth oldest, or a 1/2 chance. The youngest would thus be guaranteed to sit in the right seat, since there is only one seat left. This gives 1 * 1/2 * 1/3 * 1/2 * 1 = 1/12, or 11:1 odds against. Did you answer this riddle correctly?
YES NO
Imagine they sat down in age order, with each person randomly picking a seat. The first person is guaranteed to pick a seat that "works". The second oldest can sit to his right or left, since these five can sit either clockwise or counterclockwise. The probability of picking a seat that works is thus 2/4, or 1/2. The third oldest now has three chairs to choose from, one of which continues the progression in the order determined by the second person, for a probability of 1/3. This leaves two seats for the fourth oldest, or a 1/2 chance. The youngest would thus be guaranteed to sit in the right seat, since there is only one seat left. This gives 1 * 1/2 * 1/3 * 1/2 * 1 = 1/12, or 11:1 odds against. Did you answer this riddle correctly?
YES NO
Under The Cup Riddle
You decide to play a game with your friend where your friend places a coin under one of three cups. Your friend would then switch the positions of two of the cups several times so that the coin under one of the cups moves with the cup it is under. You would then select the cup that you think the coin is under. If you won, you would receive the coin, but if you lost, you would have to pay.
As the game starts, you realise that you are really tired, and you don't focus very well on the moving of the cups. When your friend stops moving the cups and asks you where the coin is, you only remember a few things:
He put the coin in the rightmost cup at the start.
He switched two of the cups 3 times.
The first time he switched two of the cups, the rightmost one was switched with another.
The second time he switched two of the cups, the rightmost one was not touched.
The third and last time he switched two of the cups, the rightmost one was switched with another.
You don't want to end up paying your friend, so, using your head, you try to work out which cup is most likely to hold the coin, using the information you remember.
Which cup is most likely to hold the coin?
As the game starts, you realise that you are really tired, and you don't focus very well on the moving of the cups. When your friend stops moving the cups and asks you where the coin is, you only remember a few things:
He put the coin in the rightmost cup at the start.
He switched two of the cups 3 times.
The first time he switched two of the cups, the rightmost one was switched with another.
The second time he switched two of the cups, the rightmost one was not touched.
The third and last time he switched two of the cups, the rightmost one was switched with another.
You don't want to end up paying your friend, so, using your head, you try to work out which cup is most likely to hold the coin, using the information you remember.
Which cup is most likely to hold the coin?
Hint: Write down the possibilities. Remember that there are only three cups, so if the rightmost cup wasn't touched...
The rightmost cup.
The rightmost cup has a half chance of holding the coin, and the other cups have a quarter chance.
Pretend that Os represent cups, and Q represents the cup with the coin.
The game starts like this:
OOQ
Then your friend switches the rightmost cup with another, giving two possibilities, with equal chance:
OQO
QOO
Your friend then moves the cups again, but doesn't touch the rightmost cup. The only switch possible is with the leftmost cup and the middle cup. This gives two possibilities with equal chance:
QOO
OQO
Lastly, your friend switches the rightmost cup with another cup. If the first possibility shown above was true, there would be two possibilities, with equal chance:
OOQ
QOO
If the second possibility shown above (In the second switch) was true, there would be two possibilities with equal chance:
OOQ
OQO
This means there are four possibilities altogether, with equal chance:
OOQ
QOO
OOQ
OQO
This means each possibility equals to a quarter chance, and because there are two possibilities with the rightmost cup having the coin, there is a half chance that the coin is there. Did you answer this riddle correctly?
YES NO
The rightmost cup has a half chance of holding the coin, and the other cups have a quarter chance.
Pretend that Os represent cups, and Q represents the cup with the coin.
The game starts like this:
OOQ
Then your friend switches the rightmost cup with another, giving two possibilities, with equal chance:
OQO
QOO
Your friend then moves the cups again, but doesn't touch the rightmost cup. The only switch possible is with the leftmost cup and the middle cup. This gives two possibilities with equal chance:
QOO
OQO
Lastly, your friend switches the rightmost cup with another cup. If the first possibility shown above was true, there would be two possibilities, with equal chance:
OOQ
QOO
If the second possibility shown above (In the second switch) was true, there would be two possibilities with equal chance:
OOQ
OQO
This means there are four possibilities altogether, with equal chance:
OOQ
QOO
OOQ
OQO
This means each possibility equals to a quarter chance, and because there are two possibilities with the rightmost cup having the coin, there is a half chance that the coin is there. Did you answer this riddle correctly?
YES NO
The Emperor's Proposition Riddle
You are a prisoner sentenced to death. The Emperor offers you a chance to live by playing a simple game. He gives you 50 black marbles, 50 white marbles and 2 empty bowls. He then says, "Divide these 100 marbles into these 2 bowls. You can divide them any way you like as long as you use all the marbles. Then I will blindfold you and mix the bowls around. You then can choose one bowl and remove ONE marble. If the marble is WHITE you will live, but if the marble is BLACK... you will die."
How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble?
How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble?
Hint: The answer does not guarantee 100% you will chose a white marble, but you have a much better chance.
Place 1 white marble in one bowl, and place the rest of the marbles in the other bowl (49 whites, and 50 blacks).
This way you begin with a 50/50 chance of choosing the bowl with just one white marble, therefore life! BUT even if you choose the other bowl, you still have ALMOST a 50/50 chance at picking one of the 49 white marbles. Did you answer this riddle correctly?
YES NO
This way you begin with a 50/50 chance of choosing the bowl with just one white marble, therefore life! BUT even if you choose the other bowl, you still have ALMOST a 50/50 chance at picking one of the 49 white marbles. Did you answer this riddle correctly?
YES NO
The Parrot Doors Riddle
There are two doors. One door lead to Heaven, while the other leads to Hell. A parrot stands in front of each door. One parrot always tells a lie, while the other always tells the truth. You do not know which parrot or door is which. You are allowed to only ask one question. So, what one question must you ask to determine which door is which, so you can finally go to Heaven? (Hint: The question involves what one parrot would say about the doors.)
Hint:
It doesn't matter which parrot you ask the question to, but the question would be, "What door would the other parrot say is Heaven?". Then you would choose the other door. Did you answer this riddle correctly?
YES NO
YES NO
T Shirt And Jeans
When your jeans and T-shirts get dirty
Then you put them in this to get clean
Its filled with water and detergent
Which means that its a...
Then you put them in this to get clean
Its filled with water and detergent
Which means that its a...
Hint:
Shoot A Blonde Tank Riddle
Hint:
Sherlock Holmes And The Case Of Ganpat
Ganpat is found dead in his office at his desk.
Sherlock Holmes was working on this case and have narrowed the suspects down to three people:
1. His Friend Mr Rakesh Gupta
2. Ganpat's wife "Bhawna"
3. His Secretary "Jason Kumar"
All three suspects visited ganpat on the day of his murder for various reason as they told to sherlock.
As we know where police failed , sherlock comes.
He was able to find a note at the corner of the wall. "7B91011" was written on it.
Sherlock waste no time in announcing the killer. Who was the killer ?
Sherlock Holmes was working on this case and have narrowed the suspects down to three people:
1. His Friend Mr Rakesh Gupta
2. Ganpat's wife "Bhawna"
3. His Secretary "Jason Kumar"
All three suspects visited ganpat on the day of his murder for various reason as they told to sherlock.
As we know where police failed , sherlock comes.
He was able to find a note at the corner of the wall. "7B91011" was written on it.
Sherlock waste no time in announcing the killer. Who was the killer ?
Hint:
Jason Kumar
The number on the calendar was written in a hurry.Sherlock matched the written number with the months of the year.
So the B was an 8, thereby giving us 7-8-9-10-11: July, August, September, October, November.
Use the first letter of each month and it spells J-A-S-O-N. Did you answer this riddle correctly?
YES NO
The number on the calendar was written in a hurry.Sherlock matched the written number with the months of the year.
So the B was an 8, thereby giving us 7-8-9-10-11: July, August, September, October, November.
Use the first letter of each month and it spells J-A-S-O-N. Did you answer this riddle correctly?
YES NO
Finding The Clues
Hercule Poirot Detective reviewed the information they had on the case so far.
A lady named 'monica' was found shot and Hercule already had a list of suspects: rooney, torres, dabid, messi, ronaldo
Killer is a fan of Hercule and chalenge him by leaving notes at various places.
# The first was found in a drawing room.
# The second was found in an art room.
# The third was in a bed room.
# the fourth in an ice-cream room.
# The fifth at the desk room
All of the notes read the same thing, 'The clues are where you find the notes.' Still, nothing was found anywhere.
Hercule Poirot pause for a moment and then arrested the killer. Who was the killer?
A lady named 'monica' was found shot and Hercule already had a list of suspects: rooney, torres, dabid, messi, ronaldo
Killer is a fan of Hercule and chalenge him by leaving notes at various places.
# The first was found in a drawing room.
# The second was found in an art room.
# The third was in a bed room.
# the fourth in an ice-cream room.
# The fifth at the desk room
All of the notes read the same thing, 'The clues are where you find the notes.' Still, nothing was found anywhere.
Hercule Poirot pause for a moment and then arrested the killer. Who was the killer?
Hint:
Dabid is the killer
drawing room(D) , art room(a) , bed room (b) , ice-cream room (i) , desk room (d) Did you answer this riddle correctly?
YES NO
drawing room(D) , art room(a) , bed room (b) , ice-cream room (i) , desk room (d) Did you answer this riddle correctly?
YES NO
Add Your Riddle Here
Have some tricky riddles of your own? Leave them below for our users to try and solve.