Trending Tags
Popular Searches
A Giraffe Has 2 Eyes A Monkey Has 2 Eyes An Elephant Has 2 Eyes Wat Do We Ha Riddles A Man Was Found Dead Next To A 13 Story Building The Police Say It Was A Suicide But You Say It Was A Homicide Someone Killed Him To Prove This You Go To Each Floor On The Building Open The Window And Toss A Penny Out You Do This To Each Riddles A Man Worked At A High Security Institution The Man Tried To Log Into His Computer And The Computer Denied The Pword He Then Remembered That The Pwords To The Computers Were Reset Every Month For Security Reasons He Called His Boss For His New Pword The Man Said Boss My Old Pword Is Out Of Date The Boss Said Yes It Is The New Pword Is Different But If You Listen Closely You Will Be Able To Figure Out The New One Your New Pword Has The Same Amount Of Letters As Riddles A Mother Was Killed In A Circular House And The Kids Said Riddles, A Person Wakes Up From A Nights Sleep Riddles Father Riddles, I Am A Man Without A Soul If There Is Warmth In Me It W Riddles I Am Primarily Made Up Of Calcium Riddles I Run It Runs I Stop It Runs Riddles Ism Riddles It Is Tiny House That You Will Find On The Shore Sometimes There Is A Treasure Hidden Inside It Riddles John Had 200k Mary Had 5k And Mark Will Have 500k How Has The Most Amount Of Money Riddl Riddles My Wings Are Used As Flippers So In Water So In Water I Flow Sometimes When On Land I Slide On My Belly In The Snow Riddles Never Dar Riddles The Sea Is Wrapped By The Earte The Earth Is Covered By The Bone The Bone Is Covered By The Hair The Hair Is Cover Riddles
Feel free to use content on this page for your website or blog, we only ask that you reference content back to us. Use the following code to link this page:
Terms · Privacy · Contact
Riddles and Answers © 2018
Three People In A Room
Three people enter a room and have a green or blue hat placed on their head. They cannot see their own hat, but can see the other hats.
The color of each hat is purely random. They could all be green, or blue, or any combination of green and blue.
They need to guess their own hat color by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $50,000 each, but if anyone guess incorrectly they all get nothing.
What is the best strategy?
The color of each hat is purely random. They could all be green, or blue, or any combination of green and blue.
They need to guess their own hat color by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $50,000 each, but if anyone guess incorrectly they all get nothing.
What is the best strategy?
Hint:
Simple strategy: Elect one person to be the guesser, the other two pass. The guesser chooses randomly 'green' or 'blue'. This gives them a 50% chance of winning.
Better strategy: If you see two blue or two green hats, then write down the opposite color, otherwise write down 'pass'.
It works like this ('-' means 'pass'):
Hats: GGG, Guess: BBB, Result: Lose
Hats: GGB, Guess: --B, Result: Win
Hats: GBG, Guess: -B-, Result: Win
Hats: GBB, Guess: G--, Result: Win
Hats: BGG, Guess: B--, Result: Win
Hats: BGB, Guess: -G-, Result: Win
Hats: BBG, Guess: --G, Result: Win
Hats: BBB, Guess: GGG, Result: Lose
Result: 75% chance of winning! Did you answer this riddle correctly?
YES NO
Better strategy: If you see two blue or two green hats, then write down the opposite color, otherwise write down 'pass'.
It works like this ('-' means 'pass'):
Hats: GGG, Guess: BBB, Result: Lose
Hats: GGB, Guess: --B, Result: Win
Hats: GBG, Guess: -B-, Result: Win
Hats: GBB, Guess: G--, Result: Win
Hats: BGG, Guess: B--, Result: Win
Hats: BGB, Guess: -G-, Result: Win
Hats: BBG, Guess: --G, Result: Win
Hats: BBB, Guess: GGG, Result: Lose
Result: 75% chance of winning! Did you answer this riddle correctly?
YES NO
The Secret Santa Exchange
A group of ten friends decide to exchange gifts as secret Santas. Each person writes his or her name on a piece of paper and puts it in a hat. Then each person randomly draws a name from the hat to determine who has him as his or her secret Santa. The secret Santa then makes a gift for the person whose name he drew.
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
Hint: It's not as difficult as it seems.
It's the number of ways the friends can form a circle divided by the number of ways the names can be drawn out of the hat.
1/10
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
A Man Was Outside Taking A Walk When It Began To Rain
A man was outside taking a walk when it began to rain. He did not have an umbrella and he wasn't wearing a hat. His clothes were soaked, yet not a single hair on his head got wet. How could this happen?
Hint:
Old Man On London Bridge
I met an old man on London bridge,
As the sun set on the ridge,
He tipped his hat and drew his name,
And cheated at the guessing game.
What was the mans name?
As the sun set on the ridge,
He tipped his hat and drew his name,
And cheated at the guessing game.
What was the mans name?
Hint:
Andrew. In the third line, and drew his name. It works better when you say it. Did you answer this riddle correctly?
YES NO
YES NO
12 Clowns Riddle
On my way to the fair, I met a group. The group consisted of 12 clowns. Each clown had 30 cats, each cat had 20 hats, each hat had 41 rats, each rat had 4 mice, and each mice had 79 lice. How many of us were going to the fair?
Hint:
A Sharpshooter Riddle
A sharpshooter hangs up his hat, turns around and walks 5000 meters, then turns around and shoots his gun, putting a hole right through his hat. How did he do it?
Hint:
7B91011 Riddle
Ray Whitcombe was found dead in his office at his desk. The police have narrowed the suspects down to three people:
Mrs. Barbara Whitcombe, Ray's wife
Mr. Jason McCubbins, Ray's business partner
Mr. Harold Nichols, Ray's best friend
All three visited Mr. Whitcombe the day of his murder, but all three provided the police with stories of explanation as to the reason for their visit.
Police found Mr. Whitcombe with his wrist watch still on his right arm, a torn up picture of his wife laying on the floor beside the trash can, and an ink pen in his right hand. On the desk, the police found a name plate, a telephone that was off the hook, and a personal calendar turned to the July 5th page with 7B91011 written on it. After examining this evidence, the police knew their suspect.
Who was it?
Mrs. Barbara Whitcombe, Ray's wife
Mr. Jason McCubbins, Ray's business partner
Mr. Harold Nichols, Ray's best friend
All three visited Mr. Whitcombe the day of his murder, but all three provided the police with stories of explanation as to the reason for their visit.
Police found Mr. Whitcombe with his wrist watch still on his right arm, a torn up picture of his wife laying on the floor beside the trash can, and an ink pen in his right hand. On the desk, the police found a name plate, a telephone that was off the hook, and a personal calendar turned to the July 5th page with 7B91011 written on it. After examining this evidence, the police knew their suspect.
Who was it?
Hint:
Jason McCubbins, Ray's business partner.
The calendar was the clue to solving this murder. The police realized that since Mr. Whitcombe was wearing his watch on his right arm, he must have been left-handed. Realizing that the number on the calendar was written in a hurry and with his opposite hand, police matched the written number with the months of the year. So the B was an 8, thereby giving us 7-8-9-10-11: July, August, September, October, November. Use the first letter of each month and it spells J-A-S-O-N. Did you answer this riddle correctly?
YES NO
The calendar was the clue to solving this murder. The police realized that since Mr. Whitcombe was wearing his watch on his right arm, he must have been left-handed. Realizing that the number on the calendar was written in a hurry and with his opposite hand, police matched the written number with the months of the year. So the B was an 8, thereby giving us 7-8-9-10-11: July, August, September, October, November. Use the first letter of each month and it spells J-A-S-O-N. Did you answer this riddle correctly?
YES NO
Add Your Riddle Here
Have some tricky riddles of your own? Leave them below for our users to try and solve.