Trending Tags
Popular Searches
Easy Scavenger Hunt Riddles Finish Line Riddl Riddles Fountain Riddle Riddles Hard Christmas Riddles Have 7 Candles Lit 2 Blew Out How Many Candles I Have Left Riddles With Answer I Have 7 Candles Lit 2 Go Out Riddl Riddles I Have Seven Candles Lit Riddles Latitude And Longitude Riddles My Dog Had 7 Puppies Puppy 1 Name Is Monday Riddles New York City Riddles Scarf Riddles They Travel All Over The World But End Up In The Corner What Are They Riddles What Am I Song Riddles What Is Greater Than God More Evil Than Devil The Poor Has It The Rich Need It And If You Eat It You Will Die Riddles What Is It Called When A Cat Wins A Dog Show Riddles
Feel free to use content on this page for your website or blog, we only ask that you reference content back to us. Use the following code to link this page:
Terms · Privacy · Contact
Riddles and Answers © 2017
Pearl Problems Riddle
"I'm a very rich man, so I've decided to give you some of my fortune. Do you see this bag? I have 5001 pearls inside it. 2501 of them are white, and 2500 of them are black. No, I am not racist. I'll let you take out any number of pearls from the bag without looking. If you take out the same number of black and white pearls, I will reward you with a number of gold bars equivalent to the number of pearls you took."
How many pearls should you take out to give yourself a good number of gold bars while still retaining a good chance of actually getting them?
How many pearls should you take out to give yourself a good number of gold bars while still retaining a good chance of actually getting them?
Hint: If you took out 2 pearls, you would have about a 50% chance of getting 2 gold bars. However, you can take even more pearls and still retain the 50% chance.
Take out 5000 pearls. If the remaining pearl is white, then you've won 5000 gold bars! Did you answer this riddle correctly?
YES NO
YES NO
Little Billy's Calculator
Little Billy has a calculator with 15 buttons. He has 10 keys for 0-9, a key for addition, multiplication, division, and subtraction. Finally, he has an = sign. However, Mark the Meanie messed up the programming on Billy's calculator. Now, whenever Billy presses any of the number keys, it comes up with a random single-digit number. The same goes for the four operations keys (+,-,x, /). So whenever Billy tries to press the + button, the calculator chooses randomly between addition, multiplication, subtraction, and division. The only key left untouched was the = sign.
Now, if Billy were to press one number key, one operation key, then another number key, then the = button, what are the chances the answer comes out to 6?
Now, if Billy were to press one number key, one operation key, then another number key, then the = button, what are the chances the answer comes out to 6?
Hint: Think about how many ways he could possibly get 6.
There is a 4% chance.
There are 16 possible ways to get 6.
0+6
1+5
2+4
3+3
6+0
5+1
4+2
9-3
8-2
7-1
6-0
1x6
2x3
6x1
3x2
6/1
There are 400 possible button combinations.
When Billy presses any number key, there are 10 possibilities; when he presses any operation key, there are 4 possibilities.
10(1st#)x4(Operation)x10(2nd#)=400
16 working combinations/400 possible combinations= .04 or 4% Did you answer this riddle correctly?
YES NO
There are 16 possible ways to get 6.
0+6
1+5
2+4
3+3
6+0
5+1
4+2
9-3
8-2
7-1
6-0
1x6
2x3
6x1
3x2
6/1
There are 400 possible button combinations.
When Billy presses any number key, there are 10 possibilities; when he presses any operation key, there are 4 possibilities.
10(1st#)x4(Operation)x10(2nd#)=400
16 working combinations/400 possible combinations= .04 or 4% Did you answer this riddle correctly?
YES NO
The Secret Santa Exchange
A group of ten friends decide to exchange gifts as secret Santas. Each person writes his or her name on a piece of paper and puts it in a hat. Then each person randomly draws a name from the hat to determine who has him as his or her secret Santa. The secret Santa then makes a gift for the person whose name he drew.
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
Hint: It's not as difficult as it seems.
It's the number of ways the friends can form a circle divided by the number of ways the names can be drawn out of the hat.
1/10
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
The Traffic Light Riddle
There is a traffic light at the top of a hill. Cars can't see the light until they are 200 feet from the light.
The cycle of the traffic light is 30 seconds green, 5 seconds yellow and 20 seconds red.
A car is traveling 45 miles per hour up the hill.
What is the probability that the light will be yellow when the driver first crests the hill and that if the driver continues through the intersection at her present speed that she will run a red light?
The cycle of the traffic light is 30 seconds green, 5 seconds yellow and 20 seconds red.
A car is traveling 45 miles per hour up the hill.
What is the probability that the light will be yellow when the driver first crests the hill and that if the driver continues through the intersection at her present speed that she will run a red light?
Hint:
The probability of the driver encountering a yellow light and the light turning red before the car enters the intersection is about 5.5%.
At 45 mph the car is traveling at 66 feet/second and will take just over 3 seconds (3.03) to travel the 200 feet to the intersection. Any yellow light that is in the last 3.03 seconds of the light will cause the driver to run a red light.
The entire cycle of the light is 55 seconds. 3.03/55 = 5.5%. Did you answer this riddle correctly?
YES NO
At 45 mph the car is traveling at 66 feet/second and will take just over 3 seconds (3.03) to travel the 200 feet to the intersection. Any yellow light that is in the last 3.03 seconds of the light will cause the driver to run a red light.
The entire cycle of the light is 55 seconds. 3.03/55 = 5.5%. Did you answer this riddle correctly?
YES NO
Billie's Birthday Riddle
Billie was born on December 28th, yet her birthday always falls in the summer. How is this possible?
Hint:
Ligaments Connect Riddle
You will find 206
Inside adult human bodies
Together theyre a skeleton
Ligaments connect all of these
They are?
Inside adult human bodies
Together theyre a skeleton
Ligaments connect all of these
They are?
Hint:
Over London Bridge
As I went over London Bridge
I met my sister Jenny
I broke her neck and drank her blood
And left her standing empty
Who is Jenny?
I met my sister Jenny
I broke her neck and drank her blood
And left her standing empty
Who is Jenny?
Hint:
Caramel Macchiato Riddle
Hint:
Failed Salute Riddle
Why did 2nd lieutenant Hasley salute Captain Longley, but neglect to salute the other higher ranking officers that he passed in the hallway?
Hint:
Saluting indoors is forbidden except when formally reporting to a superior officer. Did you answer this riddle correctly?
YES NO
YES NO
Running A Race And Passed The Person In Second Place
Hint:
Add Your Riddle Here
Have some tricky riddles of your own? Leave them below for our users to try and solve.