Trending Tags
Popular Searches
A Blind Girl Lost Her Pencil Her Ring And Her Dog What Did She Loose First Riddles A Man Pushing His Car Andnhe R Riddles A Man Pushing His Car Andnhe Riddles A Man Pushing His Car Andnhe Shouts Im Bankcrupt Riddles Camera Riddles Coffee Maker Riddles Diversity Riddles He Hilton Family Are Taking A Train Ride On The Train There Is A Grandmother A Grandfather Two Mothers Two Fathers Four Children Three Grandchildren One Brother Two Sisters Two Sons Two Daughters A Mother In Law A Father In Law And A Daughter In Law How Many Of The Family Are On The Tra Riddles Head In The Clouds But My Feet On The Earth Glowing With Fire People Kept A Wide Breath Place Full Of Stones A Brush And A Rock Somewhere To Hide Away From The Shock I Must Not Touch Not Be Touched And Of Heaven Am Token I Thundered Loud When The Ta Riddles I Have Five Legs One Eye Three Heads Riddles Most Cs Have A K Riddles Nautical Riddles Teacup Riddle There Is A Fishing Boat With A Ladder In It Leaning Against A Wall At The Harbor There Are Five Oars And Two Fishing Nets In The Boat The Distance Between Two Consecutive Steps On The Ladder Is Riddles You Have Ten Of These And They Rhyme With Rose Riddles
Feel free to use content on this page for your website or blog, we only ask that you reference content back to us. Use the following code to link this page:
Terms · Privacy · Contact
Riddles and Answers © 2019
Three Hunters Riddle
Three hunters just finished hunting for the night and went down to a motel. They couldn't afford three separate rooms so they decided to get one room, and split the price. The room costed $30. (It was a run-down motel, but that's not the point.) So, they each paid their $10 and went to their room. The employee running the check-in/ check-out desk realized that she overcharged them, so she sent a bell-boy to return the extra cash. On the way the bell-boy wondered how to equally split the money... he wasnt the smart type so he just slid $2 into his pocket as a tip. That way the hunters would get $1 each. Well... they got their $1 each right? So in the end they all payed $9 each, which makes $27. Plus the $2 in the bell-boy's pocket makes $29...
What happened to the last dollar?
What happened to the last dollar?
Hint:
They didn't really pay $9 each, remember? The bell-boy was too lazy to add up the actual sum that they would pay. They reeeally payed about a $8.66 each. So $8.66 times the three of them equals about $25, plus the $5 in the bell-boys equals $30 Did you answer this riddle correctly?
YES NO
YES NO
The Blind Mammals Riddle
The fact this mammal has webbed wings
Makes it a one of a kind
And contrary to the saying
None of these creatures are blind
What are these mammals?
Makes it a one of a kind
And contrary to the saying
None of these creatures are blind
What are these mammals?
Hint:
Under The Cup Riddle
You decide to play a game with your friend where your friend places a coin under one of three cups. Your friend would then switch the positions of two of the cups several times so that the coin under one of the cups moves with the cup it is under. You would then select the cup that you think the coin is under. If you won, you would receive the coin, but if you lost, you would have to pay.
As the game starts, you realise that you are really tired, and you don't focus very well on the moving of the cups. When your friend stops moving the cups and asks you where the coin is, you only remember a few things:
He put the coin in the rightmost cup at the start.
He switched two of the cups 3 times.
The first time he switched two of the cups, the rightmost one was switched with another.
The second time he switched two of the cups, the rightmost one was not touched.
The third and last time he switched two of the cups, the rightmost one was switched with another.
You don't want to end up paying your friend, so, using your head, you try to work out which cup is most likely to hold the coin, using the information you remember.
Which cup is most likely to hold the coin?
As the game starts, you realise that you are really tired, and you don't focus very well on the moving of the cups. When your friend stops moving the cups and asks you where the coin is, you only remember a few things:
He put the coin in the rightmost cup at the start.
He switched two of the cups 3 times.
The first time he switched two of the cups, the rightmost one was switched with another.
The second time he switched two of the cups, the rightmost one was not touched.
The third and last time he switched two of the cups, the rightmost one was switched with another.
You don't want to end up paying your friend, so, using your head, you try to work out which cup is most likely to hold the coin, using the information you remember.
Which cup is most likely to hold the coin?
Hint: Write down the possibilities. Remember that there are only three cups, so if the rightmost cup wasn't touched...
The rightmost cup.
The rightmost cup has a half chance of holding the coin, and the other cups have a quarter chance.
Pretend that Os represent cups, and Q represents the cup with the coin.
The game starts like this:
OOQ
Then your friend switches the rightmost cup with another, giving two possibilities, with equal chance:
OQO
QOO
Your friend then moves the cups again, but doesn't touch the rightmost cup. The only switch possible is with the leftmost cup and the middle cup. This gives two possibilities with equal chance:
QOO
OQO
Lastly, your friend switches the rightmost cup with another cup. If the first possibility shown above was true, there would be two possibilities, with equal chance:
OOQ
QOO
If the second possibility shown above (In the second switch) was true, there would be two possibilities with equal chance:
OOQ
OQO
This means there are four possibilities altogether, with equal chance:
OOQ
QOO
OOQ
OQO
This means each possibility equals to a quarter chance, and because there are two possibilities with the rightmost cup having the coin, there is a half chance that the coin is there. Did you answer this riddle correctly?
YES NO
The rightmost cup has a half chance of holding the coin, and the other cups have a quarter chance.
Pretend that Os represent cups, and Q represents the cup with the coin.
The game starts like this:
OOQ
Then your friend switches the rightmost cup with another, giving two possibilities, with equal chance:
OQO
QOO
Your friend then moves the cups again, but doesn't touch the rightmost cup. The only switch possible is with the leftmost cup and the middle cup. This gives two possibilities with equal chance:
QOO
OQO
Lastly, your friend switches the rightmost cup with another cup. If the first possibility shown above was true, there would be two possibilities, with equal chance:
OOQ
QOO
If the second possibility shown above (In the second switch) was true, there would be two possibilities with equal chance:
OOQ
OQO
This means there are four possibilities altogether, with equal chance:
OOQ
QOO
OOQ
OQO
This means each possibility equals to a quarter chance, and because there are two possibilities with the rightmost cup having the coin, there is a half chance that the coin is there. Did you answer this riddle correctly?
YES NO
The Secret Santa Exchange
A group of ten friends decide to exchange gifts as secret Santas. Each person writes his or her name on a piece of paper and puts it in a hat. Then each person randomly draws a name from the hat to determine who has him as his or her secret Santa. The secret Santa then makes a gift for the person whose name he drew.
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
When it's time to exchange presents, each person walks over to the person he made the gift for and holds his or her left hand in his right hand.
What is the probability that the 10 friends holding hands form a single continuous circle?
Hint: It's not as difficult as it seems.
It's the number of ways the friends can form a circle divided by the number of ways the names can be drawn out of the hat.
1/10
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
For a group of n friends, there are n! (n factorial) ways to draw the names out of the hat. Since a circle does not have a beginning and end, choose one person as the beginning and end of the circle. There are now (n-1)! ways to distribute the remaining people around the circle. Thus the probability of forming a single circle is
(n-1)! / n!
Since n! = (n-1)! * n (for n > 1), this can be rewritten as
(n-1)! / (n*(n-1)!)
Factoring out the (n-1)! from the numerator and denominator leaves
1/n
as the probability. Did you answer this riddle correctly?
YES NO
Taking You To School
This vehicle makes frequent stops
So getting to places can be slow
In London theyre usually red
The ones you take to school are yellow
So getting to places can be slow
In London theyre usually red
The ones you take to school are yellow
Hint:
Dog Breakfast Riddle
Hint:
Running Around The Field
Hint:
Blue Christmas Riddle
Hint:
A Little Helper
It is thanks to beings like me
Your Christmas toys dont come from stores
Because I am a little helper
Who makes your gifts from Santa Claus
Who are we?
Your Christmas toys dont come from stores
Because I am a little helper
Who makes your gifts from Santa Claus
Who are we?
Hint:
A Cruise Between Mexico And The USA Riddle
A man sails off on a cruise between Mexico and the USA. He does not stop at any ports and does not even come out of the cabin, yet he makes $300,000 from his trip. How?
Hint:
Add Your Riddle Here
Have some tricky riddles of your own? Leave them below for our users to try and solve.